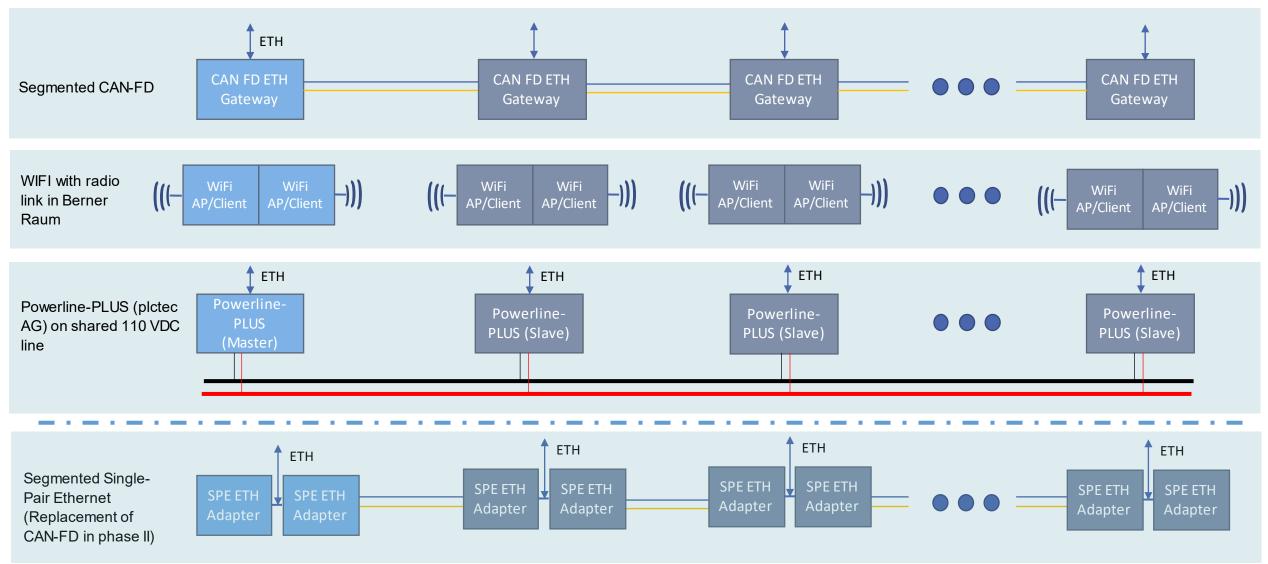


Bundesministerium für Digitales und Verkehr

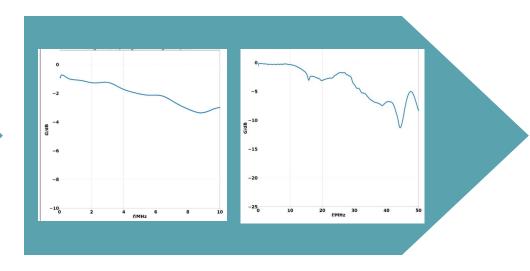
DAC4EU Data Communication Tests

Roland Hess, OW ITA GmbH



Phase I – Brief Look at Phase I

Tested Communication Concepts



Phase I – Brief Look at Phase I

Communication Tests in Standstill of Wagons

Measurements of physical communication channels (wired, radio)

Performance measurements with communication systems:

- WiFi,
- CAN-FD,
- Powerline-PLUS

Datarates: 1 – 6 Mbit/s

Packetrates: 330 – 2600 Packets/Second

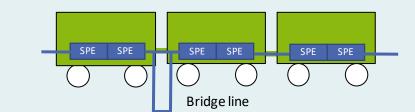
Latency (RTT): 6 – 200 ms

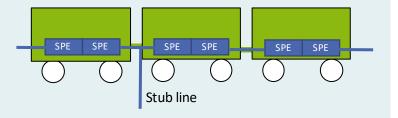
(Train with 12 wagons)

Result of the channel measurements

- Communication with modern
 communication systems possible (2-wire bus, powerline, radio)
- Slight differences between couplers regarding channel quality identified

Results of the performance Measurements:


- Requirements for the transferred information rate could be reached by tested systems (WiFi, CAN-FD Powerline-PLUS)
- Differences of latency, datarate and packetrate depending on communication system (no dependency of coupler type)


Official report: Phase I: https://bmdv.bund.de/SharedDocs/DE/Artikel/E/dak-demonstrator.html

SPE SPE

- → Evaluation of the max./sufficient segment length: Communication established in available train segment of 5 wagons
- → Test with stub lines (up to 30m): Insertion of a stub line caused a short link down -> link up event (may cause integrity fail) Reason: The change of the physical communication channel leads to a new channel estimation procedure (0.5 – 1s)

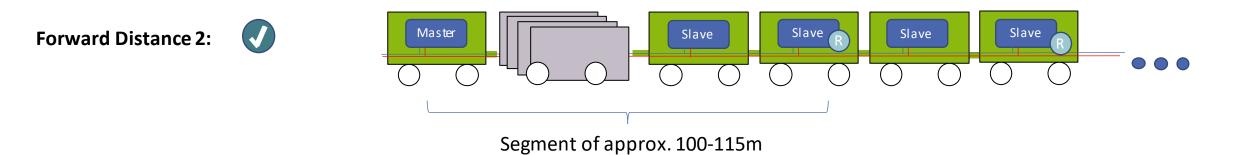
→ Test with bridge lines (up to 30m): Insertion of a bridge line caused a short link down -> link up event Reason: The change of the physical communication channel leads to a new channel estimation procedure



Stress Tests (Standstill)

Powerline

→ Evaluation of the max. segment length without repeater slave



Stress Tests (Standstill)

Powerline

→ Long segment length in train composition with ballast wagons

- All devices could be identified
- No communication problems found with insertion of a long segment
- Segment with ballast wagons equipped with 2x10mm² cable (EDDP proposed cable with twisted pair wires)

Phase II – Communication Tests on Train Operation

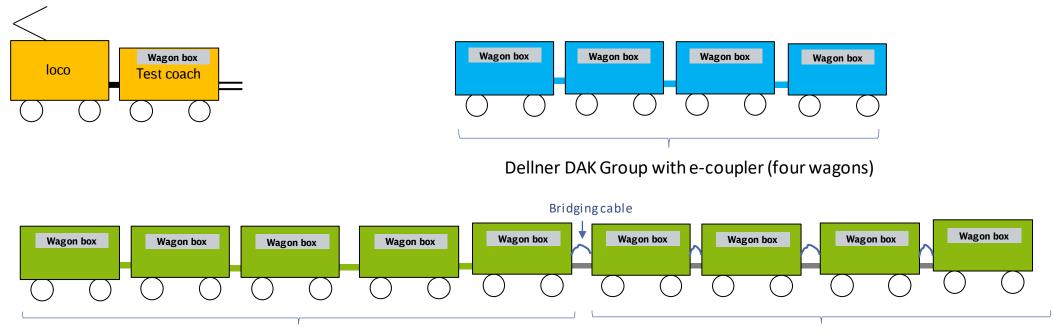
Tests on Tracks

Demonstration of operational functions:

- 1. Train initialisation process to identify:
 - Count of wagons
 - Sequence of wagons (UIC wagon numbers)
 - Direction of wagons
- 2. Train integrity during train operation
 - Communication availability to the last wagon

Availability of the communication systems

 Monitoring of packet error rates and temporary failures of the communication systems



Phase II – Communication Tests on Train Operation

Test Setup in Phase IIa with 13 Wagons

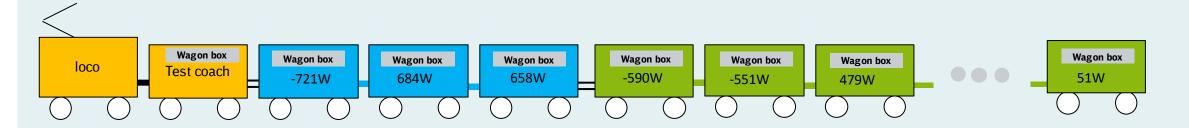
- → Only changes of the position of the wagon groups between tests
- → No changes inside wagon groups possible => Couplers always connected to the same opposite coupler partner

Voith DAK Group with e-coupler (five wagons)

Voith DAK Group without e-coupler (4 wagons)

Operational Function

Train Initialisation



Detection of wagon count and sequence (SPE and WiFi):

- Scan of the train via ICMP (Internet Control Message Protocol) to detect the count of the wagons
- Sorted wagon list derived from power values of the 110 V_{DC} powerline

Alternative solution: Topology detection using TRDP (Train Redundancy Data Protocol)

Detection of wagon count and sequence in Powerline-PLUS:

- The Powerline-Plus generates a list of the wagons from internal detection function
- Sequence is derived from the signal runtime (with a minimum distance of 5 meters in the DAC4EU test setup between modems)

******	*******	TOPOLIST ####	******
TTD sta	atus	: COMPLETE	
Topoloq Display	gy size yed entri	: 17 es : 17	
Entry	Addr	Wagon ID	MPD [ns]
0	0x0001	0x000000000C	0
	0x0002	0x0000000001	
	0x0003	0x000000000E	685
	0x0004	0x00000000D	860
3	0x0005	0x0000000002	
4	0x0006	0x0000000006	
6	0x0007	0x000000000B	1226

Operational Function

Train Initialisation Test Result

Detection of wagon count and sequence (used in SPE and WiFi):

- Detection of wagon count (by ICMP) always functional as long as communication connection to the last wagon could be established
- Detection of the sequence based on power measurement in 40% of the initialisations wrong, reasons:
 => Inaccurate power sensors,
 - => No synchronized power measurement with changing power over time
 - → For SPE and WiFi the method defined in ETB (TRDP, IEC61375-2-5) should be considered
- Detection of the wagon orientation (based on current flow direction) was working successfully.

Detection of wagon count and sequence in Powerline-PLUS:

• Generated list with amount and sequence of wagons was correct in all initialisation processes

WIFI Communication

WiFi Results - Tests on Communication Faults

Table of the WiFi communication results:

Test run	T1	T2	Т3	T4	T5	T6	T7	Т8	Т9	T10
Integrity fails	1	3	0	broken after 30 minutes	27	129	213	135	111	268
PER (%)	8,40	14,24	0	63,94	6,67	13,05	7,84	34,04	6,86	38,88

* Integrity fails are incremented on communication interruption for more than 900 ms

Two different fault scenarios could be seen for WiFi:

- → Communication interruption of few packets (several 100 ms) up to several seconds
- → Communication interruption for a long period (> 2 minutes)

→ Later examinations showed that location of fault connections were changing between a few wagon connections. Some connections had a stable link without fails.

WIFI Communication

WiFi Results – Conclusions

- Long communication interruptions caused by special device mode (ACC) and can be avoided by using other smart • technologies Removed from EDDpshort list resting of Witti discontinued!
- Shorter communication interruptions caused probably by interferences and partly by instable devices ٠

 \Rightarrow **Radio communication** outside the coupler should not be considered due to the following aspects:

- Interferences can cause burst packet fails,
- Unsafe initialisation process: Links may jump over one or two wagons, especially in reflective environments. ٠ Detection of correct sequence and wagon count could not be guaranteed.

Powerline PLUS Communication

Powerline Communication Tests

Table of the Powerline-PLUS communication results:

Test run	T1	T2	тз	T4	T5	Т6	Т7	Т8	Т9	Т10	T11
Integrity fails	C) C	0	0	0	0	0	0	C	no measures	0
PER	0%	6 0%	0%	0%	0%	0%	0.03%	0.02%	0.01%	no measures	0.02%

→ Stable communication over all tests

→ Tests after T6 showed occurence of single packet fails (no burst errors). The latency increased as well. This happened in timeslots where packet errors appeared

→ PLC Integrated **integrity check** and additional integrity check (ICMP) **without malfunction**

➔ Monitoring of the 110V_{DC} supply voltage of the powerline showed few interruptions. This can lead depending on the interruption to a single packet fail on the powerline system

Single Pair Ethernet Communication

SPE – Communication Tests Phase II

Table of the SPE communication results:

	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11
Integrity fails*	0	0	0	0	0	1	83	16	86	19	1
PER (%)	0.008	0.107	0.027	0.033	0.015	0.411	2.762	1.267	2.341	0.624	0.042

* Integrity fails are incremented on communication interruption for more than 900 ms

→ Massive communication problems started at tests with T7

→ Assumption, that one or several wagon connections caused the problems

→ With test T8 a new function was integrated to detect the point of failures

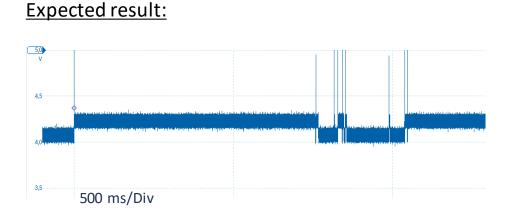
DAC4EU | Data Communication Tests | Roland Hess | 2022-11-30

Contact Monitoring

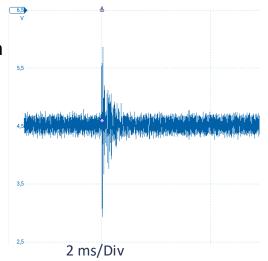
Monitoring with Logic Analyzer

- → Tests with logic analyzer at four couplers
- → Massive measurement errors (very short peak interruptions with a duration of 1 µs and below)
- → Nevertheless, few interruptions on one coupler could be seen with intervals from 3 ms to 19 ms

Start Simulation 🔶				▼ Annotations	+
	+60 ms	+70 ms	+80 ms	🔻 🛛 Timing Marker Pair 🖉	*
				A1 - A2 = 7.7715ms A1 @ 72.6660625s A2 @ 72.673834s	
05 Channel 5 🔯 🕂				▼ Analyzers	+)
06 Channel 6 🏠 🕂				Decoded Protocols	*
07 Channel 7 🔯 +5				Q Search Protocols	<u>D</u>

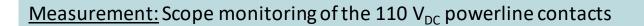

Contact Monitoring

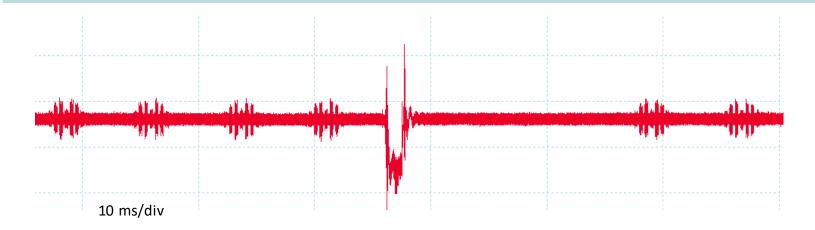
Monitoring with Current Loop Through all Wagons


<u>Measurement idea</u>: Monitoring of all coupler connections on communication line (with location tracking of the interruption)

- → Second two wire line connected in the wagon boxes to get connected line through the train
- → Resistor installed in each wagon between the two wires
- → Measurement of the current with an oscilloscope (by shunt resistor) should show the length and location of interruptions

<u>Result:</u>


- No (long) interruption on communication pins could be seen
- Sporadic distorsions on the line, but very short pulses
- Distorsions can often be seen after **train vibrations**, but also in standstill
- <u>Assumption:</u> Crosstalk from the powerline to the data bus line at specific wagons



Contact Monitoring

Monitoring on a Specific Wagon

<u>Result:</u>

• In a few cases a contact failure on the powerline pins could be seen (2 ms)

Data Communication Tests

Conclusions

- → <u>The Powerline-PLUS system works in the DAC4EU train composition well:</u>
 - → The detection of the position worked well
 - → Robustness: Stable communication to the last wagon
 - → Using the Repeater Forward Distance of 2 always worked. A higher forward distance of repeater slave caused problems and may be reached on using EDDP proposed cabling (integrated cables with constant wave resistance)

→ <u>SPE-Communication is less reliable:</u>

- → Problems regarding the stability of the communication must be investigated. In some testcases the contact problems at the couplers seems to be the problem, in latest tests distorsions on the communication line may lead to packet losses
- → Robustness (distorsions): Adaption to filters inside the single pair ethernet device may lead to better resilience
- → If contact failures in the couplers appear for more than several 100 µs, SPE loses the synchronisation and needs to reinitialize the link for 500 ms -3 seconds. This is an issue for safety relevant functions!

Bundesministerium für Digitales und Verkehr

Thank You!

